不做大哥好多年 不做大哥好多年
首页
  • MySQL
  • Redis
  • Elasticsearch
  • Kafka
  • Etcd
  • MongoDB
  • TiDB
  • RabbitMQ
  • 01.Python
  • 02.GO
  • 03.Java
  • 04.业务问题
  • 05.关键技术
  • 06.项目常识
  • 10.计算机基础
  • Docker
  • K8S
  • 容器原理
  • Istio
  • 01.GO基础
  • 02.面向对象
  • 03.并发编程
  • 04.常用库
  • 05.数据库操作
  • 06.Beego框架
  • 07.Beego商城
  • 08.GIN框架
  • 09.GIN论坛
  • 10.微服务
  • 01.Python基础
  • 02.Python模块
  • 03.Django
  • 04.Flask
  • 05.SYL
  • 06.Celery
  • 10.微服务
  • 01.Java基础
  • 02.面向对象
  • 03.Java进阶
  • 04.Web基础
  • 05.Spring框架
  • 100.微服务
  • 数据结构
  • 算法基础
  • 算法题分类
  • 前置知识
  • PyTorch
  • Langchain
  • Linux基础
  • Linux高级
  • Nginx
  • KeepAlive
  • ansible
  • zabbix
  • Shell
  • Linux内核

逍遥子

不做大哥好多年
首页
  • MySQL
  • Redis
  • Elasticsearch
  • Kafka
  • Etcd
  • MongoDB
  • TiDB
  • RabbitMQ
  • 01.Python
  • 02.GO
  • 03.Java
  • 04.业务问题
  • 05.关键技术
  • 06.项目常识
  • 10.计算机基础
  • Docker
  • K8S
  • 容器原理
  • Istio
  • 01.GO基础
  • 02.面向对象
  • 03.并发编程
  • 04.常用库
  • 05.数据库操作
  • 06.Beego框架
  • 07.Beego商城
  • 08.GIN框架
  • 09.GIN论坛
  • 10.微服务
  • 01.Python基础
  • 02.Python模块
  • 03.Django
  • 04.Flask
  • 05.SYL
  • 06.Celery
  • 10.微服务
  • 01.Java基础
  • 02.面向对象
  • 03.Java进阶
  • 04.Web基础
  • 05.Spring框架
  • 100.微服务
  • 数据结构
  • 算法基础
  • 算法题分类
  • 前置知识
  • PyTorch
  • Langchain
  • Linux基础
  • Linux高级
  • Nginx
  • KeepAlive
  • ansible
  • zabbix
  • Shell
  • Linux内核
  • 前置知识

  • PyTorch

    • 01.Pytorch安装
    • 02.Tensor 张量
    • 03.神经网络概述
    • 04.房价预测
    • 05.手写数字识别
      • 01.手写数字识别
  • Langchain

  • 大模型
  • PyTorch
xiaonaiqiang
2024-03-13
目录

05.手写数字识别

# 01.手写数字识别

"""
CIFAR-10图像分类训练脚本
优化内容:代码结构分层、注释增强、模型结构验证、功能模块化
"""

import os
import time
from typing import Tuple

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torchvision import transforms


# --------------------------
# 设备配置
# --------------------------
def configure_device() -> torch.device:
    """自动选择可用设备并打印信息"""
    if torch.cuda.is_available():
        device = torch.device("cuda")
        print(f"使用CUDA加速: {torch.cuda.get_device_name(0)}")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
        print("使用Apple Metal加速 (MPS)")
    else:
        device = torch.device("cpu")
        print("使用CPU进行训练 (性能可能受限)")
    return device


DEVICE = configure_device()
os.makedirs("checkpoints", exist_ok=True)  # 创建模型保存目录


# --------------------------
# 1.data 数据准备
# --------------------------
def prepare_dataloaders(
        batch_size: int = 128,
        num_workers: int = 2
) -> Tuple[DataLoader, DataLoader]:
    """
    准备CIFAR-10数据集加载器
    参数:
        batch_size: 训练批次大小
        num_workers: 数据加载并行进程数
    返回:
        (训练集加载器, 测试集加载器)
    """
    # 数据增强配置 (仅训练集)
    train_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),  # 随机裁剪增加位置鲁棒性
        transforms.RandomHorizontalFlip(),  # 水平翻转增加多样性
        transforms.ToTensor(),
        transforms.Normalize(
            mean=(0.4914, 0.4822, 0.4465),  # CIFAR-10通道均值
            std=(0.2023, 0.1994, 0.2010)  # CIFAR-10通道标准差
        )
    ])

    # 测试集转换 (无数据增强)
    test_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(
            mean=(0.4914, 0.4822, 0.4465),
            std=(0.2023, 0.1994, 0.2010)
        )
    ])

    # 加载数据集
    train_set = torchvision.datasets.CIFAR10(
        root="./data",
        train=True,
        download=True,
        transform=train_transform
    )
    test_set = torchvision.datasets.CIFAR10(
        root="./data",
        train=False,
        download=True,
        transform=test_transform
    )

    # 数据集 (DataLoader作用是多轮循环从数据集中加载数据)
    train_loader = DataLoader(
        train_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_workers,
        pin_memory=True  # 加速数据传到GPU
    )
    # 测试集
    test_loader = DataLoader(
        test_set,
        batch_size=100,
        shuffle=False,
        num_workers=num_workers,
        pin_memory=True
    )

    return train_loader, test_loader


# --------------------------
# 2.net 模型架构
# --------------------------
class CIFAR10Model(nn.Module):
    """
    CIFAR-10分类模型架构
    结构说明:
    - 3个卷积块 (Conv2d + ReLU + MaxPool)
    - 全连接层 + Dropout正则化
    - 输入尺寸: 3x32x32 (RGB图像)
    - 输出尺寸: 10 (CIFAR-10类别数)
    """

    def __init__(self):
        super().__init__()
        self.feature_extractor = nn.Sequential(
            # 卷积块1: 输入3通道,输出32通道
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),  # 输出尺寸: 32x16x16

            # 卷积块2: 输入32通道,输出64通道
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),  # 输出尺寸: 64x8x8

            # 卷积块3: 输入64通道,输出128通道
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2)  # 输出尺寸: 128x4x4
        )

        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(128 * 4 * 4, 256),  # 全连接层
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),  # 防止过拟合
            nn.Linear(256, 10)  # 输出层
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """前向传播"""
        features = self.feature_extractor(x)
        return self.classifier(features)


# --------------------------
# 训练组件
# --------------------------
def create_model(device: torch.device) -> nn.Module:
    """初始化模型并转移到指定设备"""
    model = CIFAR10Model().to(device)
    print("模型架构:")
    print(model)  # 打印模型结构
    return model


def evaluate_model(
        model: nn.Module,
        data_loader: DataLoader,
        device: torch.device
) -> float:
    """
    模型评估函数
    返回:
        准确率百分比
    """
    model.eval()
    correct = 0
    total = 0

    with torch.no_grad():
        for images, labels in data_loader:
            images = images.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)

            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    return 100.0 * correct / total


# --------------------------
# 主训练流程
# --------------------------
def main():
    # 初始化组件
    train_loader, test_loader = prepare_dataloaders()
    model = create_model(DEVICE)

    # 3.loss损失函数
    criterion = nn.CrossEntropyLoss()
    # 4.optimizer
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    scheduler = StepLR(optimizer, step_size=10, gamma=0.1)  # 每10个epoch学习率下降10倍
    best_acc = 0.0  # 记录最佳准确率

    # 训练循环
    print("\n开始训练...")
    for epoch in range(1, 21):  # 训练20个epoch
        epoch_start = time.time()

        # 5.训练阶段
        model.train()
        total_loss = 0.0

        for batch_idx, (images, labels) in enumerate(train_loader):
            images = images.to(DEVICE, non_blocking=True)
            labels = labels.to(DEVICE, non_blocking=True)

            # 前向传播
            outputs = model(images)
            loss = criterion(outputs, labels)

            # 反向传播与优化
            optimizer.zero_grad(set_to_none=True)  # 更高效的梯度清零
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

            # 每100批次打印进度
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch [{epoch}/20] | Batch [{batch_idx + 1}/{len(train_loader)}] "
                      f"| Loss: {loss.item():.4f}")

        # 更新学习率
        scheduler.step()

        # 6.验证阶段
        avg_loss = total_loss / len(train_loader)
        val_acc = evaluate_model(model, test_loader, DEVICE)

        # 保存最佳模型
        if val_acc > best_acc:
            print(f"准确率提升 {best_acc:.2f}% → {val_acc:.2f}%,保存模型中...")
            torch.save(model.state_dict(), "./checkpoints/best_model.pth")
            best_acc = val_acc

        # 打印epoch摘要
        epoch_time = time.time() - epoch_start
        print(f"Epoch [{epoch}/20] 耗时: {epoch_time:.1f}s | "
              f"平均损失: {avg_loss:.4f} | 验证准确率: {val_acc:.2f}%")
        print("-" * 60)

    # 最终评估
    print("\n训练完成,加载最佳模型进行测试...")
    model.load_state_dict(torch.load("./checkpoints/best_model.pth"))
    final_acc = evaluate_model(model, test_loader, DEVICE)
    print(f"最终测试准确率: {final_acc:.2f}%")


if __name__ == "__main__":
    main()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
上次更新: 2025/3/25 17:29:52
04.房价预测
01.Langchain基础

← 04.房价预测 01.Langchain基础→

最近更新
01
05.快递Agent智能体
06-04
02
200.AI Agent核心概念
06-04
03
105.Agent智能体梳理
06-04
更多文章>
Theme by Vdoing | Copyright © 2019-2025 逍遥子 技术博客 京ICP备2021005373号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式